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INTRODUCTION 

UNTIL recently the performance of counter-flow cooling 
towers was most commonly analyzed by applying the so-called 
Merkel model. This model is based on ec&&ns developed 
in a oaper published in German bv Merkel in 1925 111. This 
work was largely neglected until-the paper was translated 
into English by Nottage in 1941 [2]. Since then the model 
has been widely applied. The equations express an energy 
balance and describe simultaneous mass and heat transfer 
coupled through the Lewis relation. However, in the interest 
of tractability the equations were simplified by omitting a 
term and as a result do not account for the mass of water 
lost by evaporation. Given the inlet water and air conditions 
the Merkel equations predict the enthalpy (hence wet-bulb 
temperature) of the outlet air, but not its humidity. The 
equations also predict the required number of transfer units 
(NTU) to accomplish the process. The NTCI expresses the 
relationship which must exist between the mass/heat transfer 
coefficient and the tower volume to make the process 
possible. The Merkel equations are readily solved numeri- 
cally using the modified Euler procedure, which can easily 
be executed in a spreadsheet format on a PC. 

Recently a computer program called VERAZD [3] was 
developed for the Electric Power Research Institute (EPRI) 
to provide a two-dimensional model for determining cool- 
ing tower performance, both counter-flow and cross-flow. 
VERA2D also corrects an error in the derivation of the 
Merkel equations. The present paper retains the assumption 
of a one-dimensional model but corrects the Merkel equa- 
tions so that the mass of water lost by evaporation is properly 
accounted for. Consequently with the model developed here 
the enthalpy and humidity of the air exiting the tower are 
determined. Corrected values of NTU are also evaluated. 
Now. a set of differential equations must be solved rather 

than just one. However, again using the modified Euler pro- 
cedure the solution is readily executed in a spreadsheet for- 
mat on a PC. It is found that the Merkel equations under- 
estimate the required NTU by an amount which can be 
significant. In addition to improving the prediction of the 
required NTU, this model predicts the state of the outlet air, 
not just its enthalpy. It is necessary to know the state of this 
air if the effect on the environment of the cooling tower 
operation is to be determined ; by, for example, entropy or 
exergy calculations. 

BASIC THEORY 

Consider a vertical counter-flow cooling tower in which 
liquid water enters the top at a mass flow rate L, and a 
temperature t ,, and leaves the bottom at a mass flow rate Lz 
(less than L, due to evaporation) and a temperature t2. Air 
enters the bottom of the tower at a mass flow rate G( I +X3) 
(where G is the mass flow rate of dry air and X is the absolute 
humidity; i.e. mass of water vapor per unit mass of dry air), 
a dry-bulb temperature Tz and a wet-bulb teperature TS, 
and leaves at the top at a temperature T, and an absolute 
humidity X,. 

L,, I,, tz, G, T,, and r: (hence I’,) will be considered 
given as describing a particular cooling task ; i.e. L, cooled 
from t, to t2 (with some evaporation) by a dry air flow G 
with atmospheric conditions described by T, and T:. The 
problem is to determine Tq, X, (and hence the liquid water 
loss due to evaporation). and the relationship between the 
mass and heat transfer coefficients and the tower volume 
required to perform the operation. This will be accomplished 
by requiring mass and energy conservation, and applying 
appropriate mass and heat transfer relationships. 

We will adopt a one-dimensional model by assuming that 
the state of the water and air varies only with vertical position 



1314 Technical Nolcs 

air/water interface area per unit tower volume 
[m’m ‘1 
specific heat of dry air [kJ kg ’ C ‘1 
specific heat of liquid water [kJ kg ’ C ‘1 
specific heat of water vapor [kJ kg ’ C ‘1 
dimensionless quantity defined by equation (2 I) 
dry air flow rate [kg s ‘1 
enthalpy of moist air at temperature T [kJ kg ‘1 
mass transfer coethcient ]m h ‘1 
heat transfer coefficient [W m ’ C ‘1 
enthalpy of saturated water vapor at 
temperature I [kJ kg ‘1 
latent heat of water at reference temperature T,, 

PJ kg ‘I 
/z,p [kg m ‘s ‘1 
liquid water flow [kg s ‘1 
number of heat transfer units, KoV:L, 
[dimensionless] 
total heat transfer rate [W] 
sensible heat transfer rate [W] 

/ 
7 

I r,, 

1’ 

X 
I 

liqtud water temperature [ C] 
moist air temperature at level where liquid water 
temperature is / [ C] 
reference temperature for enthalpy of air and 
water [ C] 
tower volume [m’] 
absolute humidity of moist air [kg water (kg dry 
air) ‘1. 

NOMENCLATURE 

Greek symbol 

P density of dry air. 

Subscripts 
I state of liquid water entering top of tower 
2 state of liquid water leaving bottom of tower 
3 state of air entering bottom of tower 
4 state of air leaving top of tower. 

Superscript 
* saturated at tcmperaturc /. 

in the tower. Constdering a dift‘erential sectton of the tower 
of volume dV, conservation of mass requires that 

dL = GdX (1) 

where L is the liquid water tlow (down) and X the humidity 
of the air at the level in the tower where the water temperature 
is f (measured above some reference level). Assuming adia- 
batic flow, conservation of energy requires that 

C,,,d(iL) = Gdh (2) 

where C,, is the specific heat of the liquid water, h the cnthalpy 
of the humid air in the tower at the level where the liquid 
water temperature is 1. and G the dry air flow (up). The 
enthalpy of humid air at temperature, T, is given by 

Lr = C,,,a(T- T,,) + X]C,,(T- I‘,,) + H,l (3) 

where C;, is the specific heat of dry air, C,,, the specifc heat 
of water vapor, To the reference temperature for the enthalpy 
of moist air (O’C for the Gaff-Gratch tables [4]). and H,, the 
latent heat at the reference temperature. For consistency. / 
will now be in C. Combining equations (I) and (2), we have 

<id/r = (,,(Ldr+rGdX). (4) 

The Merkel equations neglect the second term on the right- 
hand side of equation (4). which, by equation (I), makes L 
a constant. Thus, evaporation is neglected in the Merkel 
equations. 

To find the differential tower volume. dC’, in which the 
temperature change, dr. occurs, it is ncccssary to consider 
mass and heat transfer rates between the liquid water and 
the humid air at the level in the tower where the temperature 
is f. It will be assumed that the air in contact with the liquid 
water is saturated at the water temperature. In the differential 
volume, d V. the sensible heat transfer is given by 

dy, = /r,u d V( I - T) (5) 

where h, is the heat transfer coefficient, and LI the transfer 
surface area per unit tower volume. T is the temperature of 
the humid air ‘engaging’ the water at this level. The total 
heat transfer (including latent heat) is given by 

dij = dq,f HdL (6) 

where dL is the amount of water evaporated in dV, and H 
the enthalpy of saturated vapor at temperature t. The Merkel 
analysis uses the latent heat instead of the vapor enthalpy 
in this equation. VERAZD corrects this. The mass (water) 

transfer in the differential tower volume, dd’. is given by 

dL = h,pc/d V(X* - X) (7) 

where h, is the mass transfer coefficient. I, the au densny. and 
X* the absolute humidtty ot’saturated air at 1. Now I’or the 
air water vapor system 

the Lewis relation, where C‘,,, is the specific heat of humid 
air. Substituting from equations (5). (7). and (S), equation 
(6) becomes 

dy = lI,pcrd V[c;,,(t - T) + H(X* - .%‘,J. (9) 

Equation (3) can be regrouped to read 

Lr = (C’,J., + XC,,, ) T+ X( H,, - C,,, 7.0) - C;,.> 7‘0 (10) 

where the term multiplying Tis C,J,. the specific heat ofhumid 
air, which is nearly constant and differs little from C,,,,. 

Writing equation (10) for saturated air at the level where 
the water temperature is t. and subtracting equation (10) 
from this equation there results 

/I*-/? = C;,,(r-T)+(H,,-C’p,T,,)(X*-X). (11) 

Now substituting equation (1 I) into equation (9). there 
results 

dq = Ir,otrdV[(/1*-/I)+ ((H-H,,)+Cb,T,,1(X*-.~)I. 

(12) 

It turns out that the second term in square brackets is small 
(contributing of the order of 2%) and will be neglected. Since 
this term is neglected, the use of latent heat rather than vapor 
cnthalpy in equation (6) is of no consequence in Merkcl’s 
(or our) results. Equation (12) becomes 

dy = h,fx/d V(h* -II). (13) 

Now 
dy = G‘dlr. (14) 

Substituting equations (13) and (4) in equation (14) yields 

KudV(h*-h) = C,,(Ldl+rGdX) (15) 

and from equation (I) into equation (7) 

KtrdV(X*-X) = GdX. (16) 

Here K has been written for lr,p as is done in the literature. 
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The basic equations governing counter-flow cooling tower 
performance have now been established. They are equations 
(I ). (4), ( 15). and (16). and will now be rearranged into a 
form suitable for solution. 

By eliminating KadV between equations (15) and (16) 
we obtain an equation for X, the humidity. Inserting this 
equation into equation (4) we obtain an equation for h, the 
enthaipy. Finally, inserting these expressions into equation 
(16) we obtain an equation for KQd V. After all of these 
manipul~itions there results the following set of governing 
equations : 

($7) 

(19) 

where 

F = ‘tF![x* -Xl 

h*-h 

and from equation (1) 

from which 

dL = GdX’ (21) 

L = LZ+G[X-xX,]. (22) 

The variable F which appears in these equations has a mag- 
nitude of the order of 0.1. If it is neglected compared to 
unity, the set of equations reduce to the Merkel equations, 
which greatly simplify the analysis because now the enthalpy 
is immediately established at all values of the temperature 
by the integration of equation (17) and KuV readily estab- 
lished by the numerical integration of equation (19) (with h* 
values obtained from the Gaff-Gratch tables). 

CORROBORATION OF EQUATIONS 

Baker [5] gives the history of the development of the 
coohng tower equations. including an extensive list of ref- 
erences. More references are to be found in refs. [3, 61. A 
comparison of our model with Merkel’s has just been made. 
In his book Baker presents a rigorous derivation of the 
cooling tower governing equations which hc compares with 
the Merkel equations. The matter of the use of latent heat 
rather than saturated vapor enthalpy has already been 
pointed out. Of the model governing equations derived here ; 
namely. equations (I). (4). (15) and (l6), equations (I) and 
(16) agree with Baker’s derivation. Equation (4) shouid agree 
with his equation (6.6) but differs in that he places a tZ where 
we have a t. This is the result of a mistake made in going 
from a difference representation to a differential represen- 
tation. This occurs in the term which the Merkel model 
neglects but we do not. Equation (15) should agree with 
Baker’s equation (6.15) and does after a typographical error 
is corrected. 

EXAMPLE PROBLEM 

Consider the following cooling tower design specifica- 
tions : 

liquid water enters the top of the tower at t, = 43.3’C 
(I 10°F); 
liquid water leaves the bottom of the tower at tZ = 28.9’C 
(84°F) ; 
humid air enters the bottom of the tower at a wet-bufb 
tenl~r~~lure r? = 20.6 C (69 .F) ; 
liquid water to air Row ratio. L,iG. is 1.3. 

Table 1. Tower exit conditions 

X3 
-_ 

0.015 
0.010 
0.005 

h, (kJ kg-- ‘) x, KuVjL, 
. . .- .-- 

141.1 0.0409 I.654 
141.7 0.0405 I.681 
142.3 0.0401 1.708 

For the Merkel model (which neglects evaporation) this is 
all that needs to bespecified. Themodel predicts the enthalpy 
of the exiting air, izj. arid the NTU, KuV/L,. However, for 
the model presented here (which accounts for evaporation) 
the humidity of the entering air, X, (or, alternatively, the 
dry-bulb temperature), must be specified, and the model 
predicts the humidity, .I’.,. as well as the enthalpy of the 
exiting air, along with NTU. Air at a wet-bulb temperature 
of 20.6’C is saturated at a humiditv of 0.015 ke water (kg 
dry air) ‘. We consider three values-of X,: 0.015~0.010, and 
0.005, representing progressively drier air. In all three of 
these cases the Merkel model will give the same results for 
h, and KuV/L,. 

The Merkel solution was obtained by the modified Euler 
integ~tion scheme using a l:l.icC (I’F) intetval in liquid 
water temperature. The results are 

h, = 138.1 kJ kg- ’ 

KUV 
14 

r, and X, are not determined. 
Now the model developed in this paper will be applied to 

this example. The governing equations are equations (17)- 
(19), with Lgiven by equation (21) and Fdefined by equation 
(20). We have three simultaneous non-hnear differential 
equations expressing h, A’, and &V/L, as functions of h, A’, 
and the water temperature t. They were solved nurne~~a~iy 
by the modi~ed Euler scheme in a spreadsheet format with 
a l/l.SC temperature interval to give the results shown in 
Table I. In all three cases the air exiting the tower is very 
nearly saturated at 37’C, as expected. Comparing these 
results with those obtained from the Merkel model we see 
that the most substantial difference is in the prediction of 
KuV/L,, which is significantly lower by the Merkel model. 

CONCLUSIONS 

The cooling tower model developed in this paper corrects 
the Merkel equations by including a term in the energy 
bakmce which the Merkei equations neglect, thus enabling 
the state of the exiting air to be determined and providing a 
more accurate prediction of the required NTLI. The numeri- 
cal analysis is easily carried out in a spreadsheet format on 
a PC. The required NTLi as predicted by this model can 
be significantly different from that predicted by the Merkel 
model. 
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INTRODUCTION 

TKE PULSE ‘flash’ method [I] is actually the most popular 
method of measuring the thermal diffusivity of solids, 
especially at high temperatures. In this method, the front 
face of a small disc-shaped specimen is subjected to a very 
short burst of radiant energy coming from either a laser or 
a xenon flash lamp. The resulting temperature rise of the rear 
surface of the specimen is recorded and the value of the 
thermal diffusivity is computed from this temperature vs time 
data. 

There exist several original methods for data reduction in 
the Aash method. The first group includes a method in which 
the thermal diffusivity is calculated using one or a few charac- 
teristic experimental points [I, 21. In the second group all the 
experimental points of temperature vs time data (in par- 
ticular their rising part) are used for diffusivity deter- 
mination. Such methods are based on fitting the experimental 
data by theoretical curve by means of a least square pro- 
cedure [3-51. In all the mentioned methods the precision 
of results depends on satisfying the conditions, which are 
assumed in the ideal theoretical model of the flash method [I] 
(heat pulse is uniform and instantaneous ; sample is opaque, 
homogeneous, and thermally insulated ; thermal properties 
are temperature independent). 

In the real case heat transfer between the sample and 
its environment is usually unavoidable, especially for high 
temperature measurements or for materials with poor con- 
ductivity. Several original methods were proposed which 
take into account this effect. In refs. [6-9] the thermal diffu- 
sivity determined from the ideal condition model is corrected 
by multiplying with the appropriate numerical factor, 
depending on heat losses. Another way is used in methods 
based on the general mathematical model [IO] obtained as a 
solution to a two-dimensional heat conduction equation with 
the heat losses from the whole sample surface. In those 
methods the thermal diffusivity is determined either by means 
of several particular points of the temperature vs time data 
[ 10, 111 or using the temporal moments of the defined tem- 
perature interval of the rising part of the experimental curve 
[IO, 121. An original way to eliminate the heat loss effect, 
described in ref. f13], is based on the knowledge, that rear 
surface temperature history is less perturbed as time is nearer 
to the time origin (time of gash). Thermal di~usivity is 
obtained by extrapolating the time evolution of exper- 
imentally gained values of ‘apparent’ thermal diffusivity to 
time 7xfo. 

In this paper the data reduction method is presented, which 
eliminates the effect of heat losses using the procedure of 
extrapolation, similar to that in ref. [13]. Apparent values of 
thermal diffusivity are calculated using the so-called ‘logar- 
ithmic’ method [5]. Results of testing and comparison with 
other existing methods are also given. 

PRINCIPLE OF METHOD 

The logarithmic method [S] for thermal diffusivity deter- 
mination is based on the relation 

In (t’sZT) = In[2T,,,(c~‘!nr)’ ‘I--e2/4zt (1) 

where f is time, T = 7(e, 0 the temperature of the rear fact 
of the sample. (’ the sample thickness. ?; the thermal diffusivity. 
and &, the adiabatic limit temperature of the sample after 
the pulse. Equation (1) is an approximation of the formula, 
derived from the one-dimensional heat conduction equation 
using Laplace transformation and can be used over the time 
region in which the condition T/T,,, < 0.9 is fulfilled. 

In the ideal case the plot In (t’:‘T) vs I/t is a straight line, 
and the thermal diffusivity c( is calculated by means of the 
slope K of this line using the formula 

a = -e’j4K (2) 

whrch IS independent of T,,,. 
The adiabatic limit temperature rii, can be calculated 

through the point of intersection Q of the regression line 
with the axis of ordinates. According to equation (1) we have 

r,,, = (~a) ’ ’ exp (Q),&. (3) 

In the real case, when the heat transfer between the sample 
and its environment is non-zero, the experimental curve 
In (f”‘7’) vs l/t is distorted due to the effect of heat losses. 
Therefore, the slope K and the point of intersection Q of the 
regression line with the axis of ordinates became a function 
of the time noint. around which the linear regression is used 
(K = K(t) and Q = Q(t)). The apparent diffisivity a(t), and 
apparent limit temperature T,,,(r) can be calculated using 
equations (2) and (!3), respectively. 

In the method presented the values of thermal diffusivity 
and adiabatic limit temperature are specified by extra- 
polating time evolutions of the apparent diffusivity and 
apparent limit temperature, respectively, towards the initial 
time. From this point of view. our method corresponds 
to the procedure described in ref. [13]. However, in our 
algorithm the apparent diffusivity is independent of the 
apparent limit temperature and, consequently. the thermal 
diffusivity is independent of the adiabatic limit temperature. 
In addition, our method enables one to determine the value 
of the adiabatic limit temperature when using the analogical 
procedure as in the case of thermal diffusivity. 

We see that the procedure presented transforms the prob- 
lem of correction to the effect of heat Iosses to a mathematical 
problem of regression analysis. 

In order to find the value of thermal diffusivity from the 
time evolution of the apparent diffusivity the polynomial 
regression of second order is used 

U(f) = CQtr$ (4) 


